Thermophysical and radiation properties of high-temperature C4F8-CO2 mixtures to replace SF6 in high-voltage circuit breakers


C4F8-CO2 mixtures are one of the potential substitutes to SF6 in high-voltage circuit breakers. However, the arc quenching ability of C4F8-CO2 mixtures is still unknown. In order to provide the necessary basic data for the further investigation of arc quenching performance, the compositions, thermodynamic properties, transport coefficients, and net emission coefficients (NEC) of various C4F8-CO2 mixtures are calculated at temperatures of 300–30 000 K in this work. The thermodynamic properties are presented as the product of mass density and specific heat, i.e., qCp. The transport coefficients include electrical conductivity, viscosity, and thermal conductivity. The atomic and molecular radiation are both taken into account in the calculation of NEC. The comparison of the properties between SF6 and C4F8-CO2 mixtures is also discussed to find their differences. The results of compositions show that C4F8-CO2 mixtures have a distinctive advantage over other alternative gases e.g., CF3I and C3F8, because the dissociative product (i.e., C4F6) of C4F8 at low temperatures has a very high dielectric strength. This is good for an arc quenching medium to endure the arc recovery phase. Compared with SF6, C4F8-CO2 mixtures present lower qCp at temperatures below 2800 K and larger thermal conductivity above 2800 K. Based on the position of peaks in thermal conductivity, we predict that the cooling of C4F8-CO2 arc will be slowed down at higher temperatures than that of SF6 arc. It is also found that the mixing of CO2 shows slight effects on the electrical conductivity and NEC of C4F8-CO2 mixtures.

Physics of Plasmas